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Solution of the linearised Vlasov equation for collisionless 
plasmas evolving in external fields of arbitrary spatial 
and time dependence I1 

V SkarkatO and P V Coveney$ 
t International Centre for Theoretical Physics, Trieste, Italy 
$ Department of Chemistry, University of Wales, Bangor LL57 2UW, U K  

Received 22 December 1989 

Abstract. We solve perturbatively the linearised Vlasov equation describing inhomogeneous 
collisionless plasmas evolving in time-dependent external fields. The method employs an 
explicitly time-dependent formalism and is facilitated by the use of diagrammatic tech- 
niques. It leads to a straightforward algorithm for computing the contribution to the 
solution, order by order in the external field. In the previous paper we provided the solution 
to first order; higher orders are described in the present paper. 

1. Introduction 

This paper is a continuation of the immediately preceding one (Skarka and Coveney 
1990), henceforth referred to as I, and should be read in conjunction with it. In that 
paper, we used a perturbational method to solve the linearised Vlasov equation 
describing collisionless plasmas evolving in quite general external fields of arbitrary 
spatial and time dependence. The analysis given there, which is heavily based on 
statistical mechanical diagram techniques (Balescu 1963), was carried out explicitly 
to first order with respect to the external field (but to all orders with respect to the 
internal interactions). In the present paper, we extend the treatment to higher orders. 

In first order (with respect to the external field), one has only to deal with single-line 
diagrams, yet a glance at figure 2 of I shows that in higher orders there are contributions 
from diagrams comprising more than one line. Such diagrams present some qualita- 
tively new features which are described in this paper. However, the essential point 
which emerges, despite the greater complexity now present, is that there is still a regular 
structure to the contributions, order by order in the external field. 

In section 2, we obtain a general expression for the contribution from single-line 
diagrams with two external-field ( EF) vertices which follows along exactly the same 
lines as described in I .  Section 3 deals with the new situation that pertains when, at 
second order, there are two lines present. Higher-order contributions are calculated 
in section 4, and we end the paper with some general conclusions in section 5 .  

2. Extension of the general formula to diagrams with two external-field 
vertices on a line 

We remarked in I (section 4) that the general formulae (4.25) and (4.26) are actually 
of considerably greater generality than might be apparent from the restricted context 
I Permanent address: Institute of Physics, PO Box 57, 11001 Beograd, Yugoslavia. 
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2464 V Skarka and P V Coveney 

of first-order diagrams alone. In fact, at orders higher than first, we do not need to 
begin a new computation of the corresponding expressions ab initio. Indeed, we noted 
that the structure of the diagrams (figure 2 of I) suggests that in higher order there 
will be a repetition of the single E F  vertex patterns which we studied in I. 

Recall that EF vertices connect the parts of a diagram contributing to different first 
level subdynamics. For instance, the diagram with two EF vertices (in figure 1 )  
contributes to three different subdynamics. Already on this subdynamics level we sum 
the internal field ( I F )  interactions to all orders in the coupling constant A = e' (equations 
(2.2) and (4) of I) .  Thus, in computing generalised subdynamics, which deals with 
the action of the external field, only propagators directly associated with first level 
subdynamics, i.e. coming from the part of the diagram labelled by S, in figure 1 (with 
i = 0, 1,2,  . . . ), are involved. Taking this into account, our aim is now to show how 
the general formula for two E F  vertex sequences on a line arises from that for one EF 

vertex alone. 

Figure 1. A particular diagram in the class { 0 }  (shown in figure 2 of I )  

In order to realise this objective, we first consider one particular diagram from the 
whole class (0) (in figure 2 of I), as shown in figure 1. This diagram is related one-to-one 
to the corresponding part of the solution of the Vlasov equation: 

r+r 

dT5 e[-(E+iK,,2.~r.)~ 1 
"29 

(2.1) 
For reasons of space, we do not provide all the details here, but instead we give directly 
the expression for the generalised subdynamics which was obtained according to the 

e [ -i KO, ,  ' U' ( I - r , ) l  f&),2(uc; t o ) .  
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choice of the first level subdynamics made in figure 1 (indicated by dotted vertical 
lines), using the usual procedure of computation (see I): 

The first subdynamical propagator (belonging to the term So) is of the same form 
as those in section 4 of 1 except that it contains the sum of w ,  and w , ,  since it is 
separated from the second level subdynamical propagator ( E )  by two external field 
terms, Fl and F2 ,  respectively. The second subdynamical propagator ( S , )  is separated 
from E by F2 only; consequently it carries the corresponding frequency w 2 .  This is 
all that has to be added in order to be able to write down the general formula for the 
contribution of the whole class (0) of two EF vertex diagrams (i.e. the diagrams with 
all possible numbers of loops) represented in figure 2. To write down this contribution, 
we use the first-order result of (4.25) derived in I together with the second-order 
expression (2.2) in which, between each subdynamics propagator S, and E F  vertex 
term, an arbitrary number of internal field terms is added: 

1 1 1 
E(K,) i ~ - K , * ~ ~ + K , , , . v ~ + o , ~  E (K,) 

1 a 1 1 

h K , = ( t ) +  dr- Y Y W  - 

F,P - - v,l3 - X 

I 
-i5-KY*v,, au, i..$-K,,.v,,, E(K,,) 

1 1 1 
it - K,, U,, + KyVz v2 + w 2  E''( Kx. ) -it - K,, vyv vv, ___ X 

Let us now illustrate the utilisation of this general formula in order to obtain an 
explicit contribution directly from a given diagram with a particular choice of subdy- 
namics. The choice of subdynamics in figure 2 is of 'type I' (following the terminology 
introduced in I) ,  i.e. the generalised sybdynamics is associated with the propagator 
( S ,  = E )  which does not share a particle with the external field derivative ( E  $ Fl). 
For this choice of subdynamics, we can write down directly the corresponding explicit 
algebraic expression using the algorithm stated in section 4 of I so as to complete the 

Figure 2. Diagrams with all possible numbers of loops in the class {O}. 
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general formula (2.3) with appropriate indices from the diagram in figure 2. The 
algorithm is based on the correspondence between the final expression obtained when 
all convolution integrals are done and the corresponding diagram, which is itself related 
one-to-one with the original algebraic expression (as written in (2.1)). 

As will be recalled from I, in implementing the algorithm we proceed from left to 
right. In the plasma dielectric function appearing furthest to the left in (2.3), we replace 
the wavevector by the one read from the propagator occurring at the extreme left in 
the diagram. Next comes the propagator associated with the subdynamics lying furthest 
to the left. The wavevector and particle index of its first eigenvalue K, U, are replaced 
by those of this subdynamics propagator (indicated in the diagram by a dotted vertical 
line). The second eigenvalue always carries the indices of the propagator associated 
with the generalised subdynamics E (indicated by two dotted lines). The indices of 
the frequencies w 1  and w 2  in the sum w 1 2  correspond respectively to the wavevector 
indices of EF vertices F1 and F 2 .  This propagator is followed by the internal field ( I F )  

term which depends on the same wavevector and particle as the corresponding vertex 
in the diagram. Repeating the same prescription, the whole contribution of the diagram 
can be written explicitly 

In paper I there were two distinct cases concerning the choice of the first level 
subdynamics for type-I generalised subdynamics. Namely, the propagator associated 
with the subdynamics furthest to the left either shares a particle with the EF vertex or 
it does not. The addition of an extra EF vertex creates four possible ways of choosing 
the intermediate first level subdynamics (including the situation where there are no 
loops between external field vertices because the parts of the diagram Fl and F2 
overlap-denoted Fs ,  s , F ) .  There are therefore eight particular cases. To these we 
add the eight cases coming from the type-I1 choice of generalised subdynamics where 
the propagator ( S3 = E )  associated with the generalised subdynamics is immediately 
adjacent to the EF vertex lying furthest to the right, denoted F E  in I. 

Taking into account all these particular choices of subdynamics, the sum over all 
subdynamics to which the diagram in figure 2 contributes can be represented symboli- 
cally as 

1 1 1 1 
E 

- E { ( S o F + S O  .) [ ( S I F +  E + S I F E  F E ]  +( S, ,FS,+SOF FS,) 
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In order to write an explicit expression from this symbolic formula, we recall the 
convention established in I that each time the propagator So precedes an EF vertex 
region labelled FE in the symbolic formula, their order must be permuted in the explicit 
expression. But now we have one more EF vertex between the propagator So and FE. 
However, in the particular situation denoted s,F, the propagator So precedes the 
derivative associated with this EF vertex, whilst sharing the same particle with it. In 
this case the velocity derivative does not operate on this propagator and we must 
ensure that it does not so act when, in the explicit expression, the propagator So is 
placed to the right of the next EF derivative. We can do this by introducing brackets 
with superscripts (see (2.6) below). For the same reason, the subdynamics propagator 
S ,  also has to be placed on the right of the E F  derivative in the explicit expression. 

In the particular case when So belongs to the region FE (denoted %FE), an extra 
term in square brackets has to be added in front of this propagator, owing to the 
non-commutation between the propagator So and the velocity derivative in FE (which 
arises because they share the same particle), in accordance with the algorithm explained 
in 1. Furthermore, if a subdynamics propagator S,  belongs to an EF vertex region F, 
there are no loop vertices between the two: in such a case, the corresponding inverse 
plasma dielectric function ( 1 / ~ )  in (2 .3)  must be omitted. 

Therefore, taking into account the symbolic formula (equation (2.5)) together with 
the general algebraic expression (equation (2.3)) we now obtain the complete, explicit 
contribution to the solution of the linearised Vlasov equation from all single-line 
diagrams at second order with respect to the external field: 

1 KxYz ( 2 + 6 q x )  1 
X 
it - K, U, + K,,, * vz + wyz [XI it - Kxy U,, + Kxy2 * uI + wL 

a 1 1 - 1 
X 

it - K,,> U,, + Kxyr. vZ+  W ,  au, it - K,,, . vyI  zrzy m] 

where, with reference to what was said above and for the sake of compactness, we 
have introduced square brackets with superscripts (1) and (3) (Skarka 1989a, b). By 
definition, when a derivative carrying such a superscript acts on the propagator preceded 
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I 
I 
I 4 r  Kl 0 

by a square bracket with the same superscript, this propagator has to be multiplied 
by the expression inside the bracket (see equation (4.17) of I). When this derivative 
acts on other propagators no multiplication occurs if either there are no square brackets 
preceding them or the brackets carry different superscripts. 

Thus, expressions (4.21) of I and (2.6) of the present paper taken together provide 
the complete contribution from all one-line diagrams to the solution of the linearised 
Vlasov equation, up to second order in the external field. 

I1 
I /  

3. Second-order diagrams with two lines 

In the diagrammatic representation, the lowest order with respect to the external field 
for which two lines can appear is the second one. This is a consequence of the fact 
that, for the linearised Vlasov equation, the second (and any additional) lines must 
start and end with an EF vertex (see I). Therefore, in this case, the upper line contains 
only loop vertices ({  V} in figure 2 of I). For example, consider two particular diagrams 
from the class { V}, as shown in figure 3. 

Diagrams such as these with two EF vertices are divided by them into three parts, 
each of which contributes to a separate subdynamics. Thus, the contribution of the 
diagram ( a )  in figure 3 



Solution of the linearised Vlasov equation I1 2469 

can be computed using the methods developed in I .  For the choice of first level 
subdynamics shown in this figure (labelled by dotted single vertical lines), we have 

where the notation is the same as that employed in I. The contribution to the generalised 
subdynamics (two vertical dotted lines in figure 3( a ) ) ,  which always coincides with 
the first-level subdynamics lying furthest to the right in the diagram, is thtli calculated: 

Inspection of ( 3 . 1 )  reveals that the particles labelling the two separate lines are 
nevertheless mixed in the propagator corresponding to that part of the diagram. 

To obtain the solution of the Vlasov equation we must sum the contributions from 
the whole family of diagrams { V }  (figure 2 of I ) .  It will be recalled that the diagrams 
in this family differ only in the number of loop vertices. In I ,  it was shown that, for 
one-line diagrams, a propagator with a loop on its right contributes an independent 
integral J (equation (3.7) of I) over the velocity of the particle concerned, provided 
that this propagator is not associated with either a subdynamics (i.e. So, S1 and E in 
figure 3 ( a ) )  or the domain of an EF vertex (e.g. Fl). Furthermore, when the whole 
family of diagrams is taken, these J-terms form the sum of a geometrical progression 
which is nothing other than the reciprocal of the plasma dielectric function E. 
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However, in the present situation involving two lines, the mixing of the particles 
which occurs in the propagator inhibits the isolation of a single J-integral. Fortunately, 
this difficulty can be circumvented by using the property of ‘dynamical factorisation’ 
which has been established elsewhere (Skarka 1987a, b, 1989a, b). This property applies 
to both diagrams and parts of diagrams which can be split by a horizontal line into 
two or more separate ‘blocks’. A block does not contain any particle occurring in any 
other block (see, e.g., Skarka and Coveney 1988). Consequently, each block contributes 
a dynamically independent term to a subdynamics: it is as if each block were a 
completely separate diagram. 

In order to factorise the contributions coming from two blocks within a diagram, 
we must consider the whole permutation class of such diagrams. This class is obtained 
from a given diagram by keeping the same time ordering of I F  vertices in each block 
but taking all possible permutations of the mutual ordering of the vertices between 
different blocks in such a way that the vertices belonging to a given subdynamics 
remain within that subdynamics. This restriction arises by virtue of the presence of 
more than one (first level) subdynamics, in contradistinction with the case of only one 
which was treated previously (Skarka 1987a, b, 1989a, b). 

For example, the diagram in figure 3(a)  contains two lines and therefore two blocks; 
by shifting one loop vertex with respect to the other while keeping the same time 
ordering in each block and all subdynamics unchanged, we obtain figure 3( b). In this 
diagram, two loops in the central subdynamics are interchanged relative to figure 3( a ) .  
The corresponding contribution of figure 3( b) is 

By means of the relation 

1 1  
=lim-- 

e-oi&+a i t + b  (3.5) 

which is a consequence of the Poincark-Bertrand theorem for Schwartz distributions 
(Balescu 1963, George 1970), we can sum (3.3) and (3.4) 

1 1 a 
h.Jt)= d T .  F I T * -  

1 5 - KO * V,b i 5 - KO - U b  + KO * Vd + 1 d U, 

1 1 1 
X v1 r b 

I 
it - K, urq it - KO * v b c  it - KO * U, - K, U, + KO - ud + w 2  

The two-line part of the diagram between the two EF vertices is now seen to be 
dynamically factorised, contributing two mutually independent terms which come from 
the two blocks. The exception is the propagator associated with the subdynamics itself 
which remains unfactorised, but this presents no problems because it does not contribute 
through J to the dielectric function. 
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As in previous cases described in I, the propagators immediately before and after 
an EF vertex ( F ,  etc) do not give rise to any J terms. However, this is also true for 
propagators associated with the upper line, even though this line does not contain any 
EF vertices. Therefore, in the present case there are no J terms. The reason is that 
each EF vertex on the lower line marks the division between different first-level 
subdynamics. Thus the propagator on the upper line is cut into two parts by the 
presence of an E F  vertex on the lower line; each part belongs to a separate subdynamics. 
This is why there are two distinct propagators with the same particle index ( b )  
distinguished only by their different subdynamics indices. 

If the overlapping part of a two-line diagram contains three loops, there are instead 
three diagrams in the permutation class (because there are three possible permutations 
of the mutual ordering of these loops). They are represented in figure 4 using arrows 
to depict all possible permutations of the loop vertex in the second block with respect 
to those in the first one. The diagrams in this case can be summed using (3.5) twice 

1 
vOb{ 1 due it - KO . vec 

1 1 
X cy., r 
it- K1 * U,, it- KO * obc 

where we recognise one J term (in braces) depending only on the indices labelling 
the upper block. 

The procedure can evidently be carried out for arbitrarily many loop vertices by 
repeated application of (3.5). Indeed it has been shown elsewhere (Skarka 1989b) that 
the property of dynamical factorisation holds for arbitrary order in the coupling 
constant. 

It follows that the sum of the whole family {V} of diagrams (drawn in figure 5 
with the corresponding choice of subdynamics) is given by summing first each permuta- 
tion class and then over the J terms appearing in the dynamically factorised form: 

1 1 
h K o m ( t ) =  dr- YO, I &(KO) it- KO u, + KO * ux+ wyz 

1 1 a 1 
X- FI,,*-- 

E ''( KO) - i t  - KO * up, 

1 1 1 1 
i t -Ko.up ,  &(KO) E (KO) - i t -Ko-ux ,  

a u, i( - KO uyz - K, . u, + U ,  

vo, - Y O Y  - X 

1 1 1 1 a 
i t - K ,  U,,, &(KI)  &"(KI) - i t -K,  - U,, au, Yl,, - Yl, - h*-- 

(3.8) 
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Figure 4. A diagram in the class { Q}. The arrows represent displacements of a single loop 
vertex which generate the permutation class associated with this diagram. 

50 6 51 6 S p E  P 

Figure 5. The sum of the complete class {Q} of diagrams for the particular choice of 
subdynamics shown. 

This general formula can now be used to write directly from the diagram an explicit 
expression for each possible choice of subdynamics. In order to obtain the sum over 
all subdynamics, the symbolic expression ( 2 . 5 )  is of great help for taking into account 
these different choices. Indeed, although ( 2 . 5 )  was originally constructed for single-line 
diagrams, it can also be applied to those with two lines, since the sequence of external 
field terms, dielectric constants, and subdynamical propagators is the same for all 
two-EF-vertex diagrams. However, in the two-line part of a diagram dielectric functions 
arise in pairs, each associated with a single line. Also, the convention for translating 
a symbolic expression into an explicit one by means of (3.8) is different when the 
corresponding diagram contains two lines. It is in fact simpler since, owing to the 
particular topology of two-block diagrams, even when we encounter the term FE,  we 
have to deal only with generalised subdynamics for which the subdynamical propagator 
E, residing in a different block, does not share a particle with the derivative from the 
vertex FE. Consequently, there is no need to invert the ordering of any terms in explicit 
expressions compared to their appearance in the diagrams and symbolic formulae. 

The combination of the results of sections 2 and 3 thus provide the complete 
solution of the linearised Vlasov equation up to second order with respect to the 
external field. 

4. Higher-order contributions 

We now move on to a consideration of the contributions to the solution of the Vlasov 
equation at third and higher orders with respect to the external field. These contribu- 
tions can be readily worked out following the methods described hitherto. For this 
reason, we do not provide all the details of the calculations. 

4.1. Contributions from single-line diagrams 

We first discuss the case of single-line diagrams. One such third-order diagram 
is shown in figure 6 .  For the choice of subdynamics indicated in figure 6, we 
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get the expression 

The class of diagrams with three EF vertices contains diagrams (like the one in 
figure 6 )  with all possible numbers of loops; it is represented in figure 7.  The correspond- 
ing contribution of this class is computed in the usual way: 

1 1 
"og - i ~ - K o ~ u g + K 0 1 2 3 ~ u c + ~ 1 2 3  E ( K O )  
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Figure 7. The class {P} of three EF vertex diagrams 

By analysing this expression in association with (2.3) and equations (4.21) and 
(4.26) from I ,  one notices a general structure based on the repetition of the single EF 

vertex pattern. The only non-trivial modification concerns the appearance of a 
frequency sum in the denominator of the propagator Si, corresponding to the frequen- 
cies associated with all the E F  vertices appearing between this first level subdynamics 
propagator and the generalised subdynamics one, E. For these reasons, it is possible 
to deduce a general formula for the contribution from the class { P }  of diagrams of 
arbitrary order (see figure 2 in I) ,  along the same lines as was done in I and section 
2 above. We obtain the following general expression: 

1 
V M c l  

As before, the contribution of a given diagram for a particular choice of subdynamics 
can be obtained from this formula by replacing all wavevector and particle indices in 
(4.3) by concrete ones read from that diagram. 

Equations (4.2) and (4.3) describe the most general situation when the subdynamics 
are chosen in such a way that the propagators associated with them (denoted Si 
following the conventions of I) never coincide with the propagators immediately before 
and after the EF vertex (labelled F y ) .  If they do coincide there are no I F  (loop) vertices 
between them and in this case the corresponding plasma dielectric function or ( l / ~ ) -  
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term in (4.3) must be omitted. There are respectively four and sixteen such combinations 
for diagrams with one and two EF vertices; all of them have been previously enumerated 
and their contributions computed in I and section 2 above. When each new EF vertex 
is added the number of such possible combinations is multiplied by four. Since the 
solution of the Vlasov equation is given in terms of a sum over all subdynamics, at 
third order we must sum sixty-four distinct cases. As before, this can be done symboli- 
cally by utilising the notation introduced in I: 

As in section 2, in order to write all these contributions explicitly, the general formula 
(4.3) (specifically its third-order part) has to be applied together with (4.4). Since all 
EF vertices lie on the same line, the convention inverting the order of appearance of 
the propagators S, relative to the FE-terms in the algebraic expressions, established in 
I and reiterated in section 2, has to be applied. 

In an analogous fashion, explicit higher-order expressions can be generated using 
(4.3) up to arbitrary order. 

4.2. Contributions from two-line diagrams 

When we come to consider the third-order contribution from two-line diagrams (figure 
8) (from the class { W }  in figure 2 of I), the situation is very similar to that described 
in section 3 for second-order contributions. 

In figure 8 we give as an example only the simplest permutation class (as before, 
an arrow indicates the corresponding permutation of loop vertices). The dynamical 
factorisation of the contributions coming from different blocks is obtained using (3.5) 

Figure 8. A particular diagram in the class { W}. The arrow indicates the permutation of 
loop vertices. 
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as before 

(4.5) 

Note that now an EF vertex on the upper line cuts the propagator below on the lower 
line into two parts, each belonging to a separate subdynamics. This propagator is 
evidently a component of the EF term; hence, it does not contribute to a J quantity, 
for the reasons already explained in section 3. 

We now represent in figure 9 the whole class { W }  of diagrams (see also figure 2 
of I). 

Figure 9. The complete class { W }  of two-line, three-EF-vertex diagrams 

Following the same procedure as in section 3, we write the general formula 
corresponding to this class of diagrams: 

1 1 1 
h K y m ( t ) +  dT- v,.c - I E(K,.) it-K; v,,+K,.; vx+o, , . ,  E"(K,.) 

1 a 1 
X F,., - - 

-it - K, - U,, 
1 1 1 1 

it-K; U,, vxp~(K, . )  yxyE'c(K,) -it-K,.. oxy 

1 1 1 1 
it - K,. * v,, v~, E(K,.) v~* ECC(K~) -it - K,, e v,, 

av, it - K,. * U, - Ky 0 vw + K,.. * vx + wy, 

X 

X 

a 1 1 
yZ+ x F2, - 

av, i t  - K,, * v , ~  - K? * v* + w z  it - K,, - U+, 
1 1 1 1 

X- vvn E(K,) vzmECE(K,) -it-K; vrT i t -K, , .  u,& . 
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(4.6) 

This general expression can be extended to higher orders in a straightforward way, as 
has been done in the preceding subsection (section 4.1) for one-line diagrams. 

The symbolic expression (4.4) enumerating all possible choices of subdynamics is 
the same for all third-order diagrams, regardless of the number of blocks they possess. 
Therefore, using this relation, the general formula (4.6), together with our algorithm, 
we can immediately write down the contributions from the family of diagrams { W }  
to the solution of the Vlasov equation for all subdynamics. 

For higher orders, the analysis proceeds in an exactly similar way. Then we 
encounter diagrams consisting of an arbitrary number of lines. No new principles 
emerge, however, since the dynamical factorisation procedure can be applied to 
multiblock diagrams by first separating the particles coming from a pair of blocks, and 
then separating these from those particles attached to other blocks (Skarka 1989b). 
Repeated application of (3.5) to the sum of the permutation class of these diagrams 
then provides the requisite dynamically factorised expression. 

By this stage, we hope to have convinced the reader that there is a regular structure 
to the contributions arising order by order in the external field, and that it is a 
straightforward matter to compute the solution to the linearised Vlasov equation in 
the presence of an external field by this method. 

Indeed, we would like to point out again (see I )  that the subdynamics approach 
to the solution of kinetic equations is quite general and is not restricted to the treatment 
of the Vlasov equation alone. 

5. Conclusions 

In the present paper and the preceding one ( I ) ,  we have obtained the solution of the 
linearised Vlasov equation describing a collisionless plasma evolving in an external 
field of arbitrary spatial and time dependence. We used statistical mechanical perturba- 
tion theory combined with diagrammatic techniques to develop a solution in powers 
of the external field. However, the solution includes all orders with respect to the 
internal interactions, in order to deal with collective effects arising from the long-range 
Coulomb interactions in a plasma. 

In I, the solution was given to first order in the external field, while in the present 
article the analysis was extended to include higher orders. Beyond first order, some 
new features emerge which are associated with the presence of more than a single line 
in the diagrammatic representation. However, we have shown that it is still possible 
to find a regular structure in the contributions from higher orders. This permits us to 
write symbolic expressions directly from the diagrams while retaining the same ordering 
of sequences of terms. Using the conventions established in I, such symbolic formulae 
can be translated into algebraic expressions: these are in turn rendered fully explicit 
on insertion of specific particle and wavevector indices pertaining to any given family 
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of diagrams. Thus these contributions, like those in first order, can be computed by 
means of a simple algorithm which is very convenient for implementation using 
symbolic computation techniques. This is of considerable importance for future con- 
crete applications of our approach. 

In the context of laser-plasma interactions, there is a real need for analytical 
techniques which will cater, at one and the same time, for plasmas which are both 
non-Maxwellian and strongly inhomogeneous. Our approach, which is complementary 
to existing particle-simulation and other numerical methods, represents a new, micro- 
scopically based kinetic theory that may be able to provide fresh insight into some of 
these processes. 
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